Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.137
Filtrar
1.
Science ; 382(6670): 600-606, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917714

RESUMO

Sex determination in mammals depends on the differentiation of the supporting lineage of the gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively. Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining factor remains unknown. In this study, we identified -KTS, a major, alternatively spliced isoform of the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of -KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our results identify -KTS as an ovarian-determining factor and demonstrate that its time of activation is critical in gonadal sex differentiation.


Assuntos
Ovário , Processos de Determinação Sexual , Proteínas WT1 , Animais , Feminino , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Processos de Determinação Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Testículo/crescimento & desenvolvimento , Proteínas WT1/genética , Proteínas WT1/metabolismo , Isoformas de Proteínas
2.
J Econ Entomol ; 116(4): 1261-1267, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37229556

RESUMO

Leptoglossus zonatus (Dallas) (Hemiptera: Coreidae) is a polyphagous insect pest attacking a wide variety of crops. In California's Central Valley, it is now the dominant leaffooted bug on almonds, pistachios, and pomegranates. Leptoglossus zonatus pest status depends largely on overwintering adult survival and reproductive potential, which determines its population size in spring and early summer when nut crops are particularly susceptible to bug damage. Here, we investigated the overwintering reproductive biology of L. zonatus in laboratory and field experiments to gain information about its ovary development, time of mating, and the impact of low temperatures on egg hatch. With dissections of laboratory-reared L. zonatus, we established a baseline for ovarian development and determined that the size of the spermathecal reservoir is larger in mated than in unmated females. Dissections and behavioral experiments of field-collected material provided evidence of mating events before dispersal from overwintering sites. Laboratory trials showed that temperature significantly impacted L. zonatus egg hatch. Leptoglossus zonatus reproductive biology presented provides valuable information on its population dynamics and dispersal from overwintering sites, and will contribute to the development of monitoring and management tools.


Assuntos
Heterópteros , Ovário , Oviposição , Animais , Feminino , California , Heterópteros/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Comportamento Sexual Animal , Estações do Ano , Temperatura Baixa
3.
Differentiation ; 129: 37-59, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36347737

RESUMO

A definition of normal human fetal and early postnatal ovarian development is critical to the ability to accurately diagnose the presence or absence of functional ovarian tissue in clinical specimens. Through assembling an extensive histologic and immunohistochemical developmental ontogeny of human ovarian specimens from 8 weeks of gestation through 16 years of postnatal, we present a comprehensive immunohistochemical mapping of normal protein expression patterns in the early fetal through post-pubertal human ovary and detail a specific expression-based definition of the early stages of follicular development. Normal fetal and postnatal ovarian tissue is defined by the presence of follicular structures and characteristic immunohistochemical staining patterns, including granulosa cells expressing Forkhead Box Protein L2 (FOXL2). However, the current standard array of immunohistochemical markers poorly defines ovarian stromal tissue, and additional work is needed to identify new markers to advance our ability to accurately identify ovarian stromal components in gonadal specimens from patients with disorders of sexual differentiation.


Assuntos
Folículo Ovariano , Ovário , Feminino , Humanos , Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Células da Granulosa/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento
4.
Science ; 376(6599): eabh3104, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549308

RESUMO

A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope through microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet." Here, we identified the "zygotene cilium" in oocytes. This cilium provides a cable system for the bouquet machinery and extends throughout the germline cyst. Using zebrafish mutants and live manipulations, we demonstrate that the cilium anchors the centrosome to counterbalance telomere pulling. The cilium is essential for bouquet and synaptonemal complex formation, oogenesis, ovarian development, and fertility. Thus, a cilium represents a conserved player in zebrafish and mouse meiosis, which sheds light on reproductive aspects in ciliopathies and suggests that cilia can control chromosomal dynamics.


Assuntos
Pareamento Cromossômico , Cílios , Oócitos , Oogênese , Ovário , Animais , Centrômero/genética , Centrômero/fisiologia , Pareamento Cromossômico/genética , Pareamento Cromossômico/fisiologia , Cílios/fisiologia , Feminino , Fertilidade/fisiologia , Camundongos , Morfogênese , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Oogênese/fisiologia , Ovário/crescimento & desenvolvimento , Telômero/genética , Telômero/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
5.
Gene ; 823: 146393, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35248662

RESUMO

The Atlantic salmon (Salmo salar) is a globally important species for its value in fisheries and aquaculture, and as a research model. In order to characterise aspects of sex differentiation at the morphological and mRNA level in this species, the present study examined developmental changes in gonad morphology and gene expression in males and females between 0 and 79 days post hatch (dph). Morphological differentiation of the ovary (indicated by the formation of germ cell cysts) became apparent from 52 dph. By 79 dph, ovarian phenotype was evident in 100% of genotypic females. Testes remained in an undifferentiated-like state throughout the experiment, containing germ cells dispersed singularly within the gonadal region distal to the mesentery. There were no significant sex-related differences in gonad cross-section size, germ cell number or germ cell diameter during the experiment. The expression of genes involved in teleost sex differentiation (anti-müllerian hormone (amh), cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a), forkhead box L2a (foxl2a), gonadal soma-derived factor (gsdf), r-spondin 1 (rspo1), sexually dimorphic on the Y chromosome (sdY)), retinoic acid-signalling (aldehyde dehydrogenase 1a2 (aldh1a2), cytochrome P450 family 26 a1 (cyp26a1), cytochrome P450 family 26 b1 (cyp26b1), t-box transcription factor 1 (tbx1a)) and neuroestrogen production (cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b)) was investigated. Significant sex-related differences were observed only for the expression of amh, cyp19a1a, gsdf and sdY. In males, amh, gsdf and sdY were upregulated from 34, 59 and 44 dph respectively. In females, cyp19a1a was upregulated from 66 dph. Independent of sex, foxl2a expression was highest at 0 dph and had reduced âˆ¼ 47-fold by the time of morphological sex differentiation at 52 dph. This study provides new insights into the timing and sequence of some physiological changes associated with sex differentiation in Atlantic salmon. These findings also reveal that some aspects of the mRNA sex differentiation pathways in Atlantic salmon are unique compared to other teleost fishes, including other salmonids.


Assuntos
Proteínas de Peixes/genética , Ovário/crescimento & desenvolvimento , Salmo salar/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Ovário/química , Salmo salar/genética , Diferenciação Sexual , Transdução de Sinais , Testículo/química
6.
J Ovarian Res ; 15(1): 14, 2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35067219

RESUMO

BACKGROUND: Ginseng is a powerful phytoestrogen with high antioxidant properties. OBJECTIVE: This study aimed to evaluate the effect of Panax Ginseng (PG) on folliculogenesis, proliferation, and apoptosis in the ovary impaired by nicotine. METHODS: Forty adult mice were divided into five groups. Control, sham, and nicotine groups, and co-treated groups of nicotine and ginseng in doses of 0.5 and 1 g/kg. Folliculogenesis was assessed via histopathology and serum evaluation of estradiol, progesterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) by ELISA. Lipid peroxidation and antioxidant enzyme activities both in homogenate tissue and serum were assayed by colorimetric analysis. Apoptotic markers of cytochrome c (Cyt c), Bax, and Bcl-2 were evaluated by RT-PCR. Proliferative index was studied by the Ki-67 immunostaining procedure. RESULTS: In comparison to the control or sham groups, nicotine significantly reduced the levels of FSH, LH, and estradiol hormones. An insignificant reduction was observed in the progesterone hormone. Nicotine reduced all healthy follicle numbers, except primordial (P = 0.001). Malondialdehyde (MDA) was increased in tissue and serum in the nicotine group (P = 0.01). Serum catalase (CAT) and enzymatic activity of superoxide dismutase (SOD) both were reduced in tissue and the serum, in the nicotine group. Nicotine induced a reduction in the proliferative indexes of granulosa and theca cells in pre-antral and antral follicles (P = 0.001). However, its effect on the proliferative index of stroma cells was not significant. Apoptotic markers were elevated in the nicotine group (P = 0.001). Co-treatment with ginseng elevated all sex hormones, increased healthy follicles, and reduced tissue or serum lipid peroxidation, compared with the nicotine group (p < 0.05). Co-Treatment with ginseng also reduced the expression of apoptotic markers and increased the proliferative indexes in granulosa and theca cells in pre-antral and antral follicles and also in stroma cells, in comparison to the nicotine group (P = 0.001). All above-mentioned alterations following treatment with ginseng were remarkable, especially in the dose of 1 g/kg. CONCLUSION: This study showed ginseng protects folliculogenesis via alteration of hypothalamic- pituitary-gonadal (HPG) axis, induction of proliferation in ovarian somatic cells, reduction of lipid peroxidation, and downregulation of apoptotic markers in the mouse ovary, treated with nicotine.


Assuntos
Nicotina/farmacologia , Ovário/efeitos dos fármacos , Panax , Preparações de Plantas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Catalase/sangue , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Hormônios/sangue , Antígeno Ki-67/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/sangue , Camundongos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo
7.
Elife ; 102021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590579

RESUMO

Production of proliferative follicle cells (FCs) and quiescent escort cells (ECs) by follicle stem cells (FSCs) in adult Drosophila ovaries is regulated by niche signals from anterior (cap cells, ECs) and posterior (polar FCs) sources. Here we show that ECs, FSCs, and FCs develop from common pupal precursors, with different fates acquired by progressive separation of cells along the AP axis and a graded decline in anterior cell proliferation. ECs, FSCs, and most FCs derive from intermingled cell (IC) precursors interspersed with germline cells. Precursors also accumulate posterior to ICs before engulfing a naked germline cyst projected out of the germarium to form the first egg chamber and posterior polar FC signaling center. Thus, stem and niche cells develop in appropriate numbers and spatial organization through regulated proliferative expansion together with progressive establishment of spatial signaling cues that guide adult cell behavior, rather than through rigid early specification events.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Células-Tronco/metabolismo , Animais , Feminino , Pupa/crescimento & desenvolvimento
8.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576272

RESUMO

Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and ß. The FSH ß-subunit (FSHß) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH ß-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Ovário/metabolismo , Células de Sertoli/metabolismo , Animais , Dimerização , Feminino , Fertilidade , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Células Germinativas/metabolismo , Gonadotropinas/metabolismo , Humanos , Masculino , Camundongos , Ovário/embriologia , Ovário/crescimento & desenvolvimento , Hipófise/embriologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Ratos , Receptores do FSH/metabolismo , Reprodução , Maturidade Sexual , Espermatogênese/genética , Espermatogônias/citologia
9.
Front Endocrinol (Lausanne) ; 12: 711902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456868

RESUMO

Background: Premature ovarian insufficiency (POI) is associated with severe physical damage and psychological burden on women. Transplantation of exosomes is an encouraging regenerative medicine method, which has the potential for restoring ovarian functions on POI with high efficiency. This study aims at evaluating the therapeutic efficacy of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) on ovarian dysfunction of POI and the role of Hippo pathway in this exosome-mediated treatment. Methods: POI mice models were established through intraperitoneal injection of cyclophosphamide. Subsequently, transplantation of hUCMSC-Exos was conducted to administer POI mice. Ovaries and plasma of these mice models were harvested after two weeks of treatment. Ovarian morphology and follicle number were assessed by hematoxylin and eosin staining. Moreover, ELISA was used to detect hormone levels, which are related to ovarian function in serum. To assess the recovery of reproductive ability, we recorded the rate of pregnancy, the amount of offspring, and the time of birth in different groups. To explore the underlying mechanisms of exosome-mediated treatment for ovarian function recovery, the proliferation of ovarian cells in vivo was detected by immunohistochemistry and immunofluorescence staining. Additionally, we conducted EdU and CCK-8 assays to assess the proliferative ability of ovarian granulosa cells (GCs) that were cultured in vitro. Western blot analysis was conducted to estimate the proteins levels of Hippo- and proliferation-associated molecules in vivo and in vitro. Results: After transplantation of hUCMSC-Exos, the ovarian function-related hormone levels and the number of ovarian follicles returned to nearly normal degrees. Meanwhile, there was a significant improvement in reproductive outcomes after exosomal treatment. Furthermore, the improvement of ovarian function and proliferation was associated with the regulation of Hippo pathway. In vitro, co-culture with exosomes significantly elevated the proliferation of ovarian GCs by regulating Hippo pathway. However, the positive effects on the proliferation of GCs were significantly depressed when key Hippo pathway molecule was inhibited. Conclusion: This study suggested that hUCMSC-Exos promoted ovarian functions and proliferation by regulating the Hippo pathway. Therefore, exosomal transplantation could be a promising and efficient clinical therapy for POI in the near future.


Assuntos
Exossomos/transplante , Via de Sinalização Hippo/fisiologia , Células-Tronco Mesenquimais/ultraestrutura , Insuficiência Ovariana Primária/terapia , Cordão Umbilical/citologia , Animais , Proliferação de Células , Exossomos/fisiologia , Feminino , Células da Granulosa/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ovário/crescimento & desenvolvimento , Ovário/fisiopatologia , Insuficiência Ovariana Primária/fisiopatologia
10.
Acta Histochem ; 123(6): 151772, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34428603

RESUMO

Triclocarban (TCC), an antimicrobial compound commonly added to a wide range of household and personal hygiene care products, is one of the most prevalent endocrine-disrupting substances (EDS). This study was conducted to elucidate whether in utero and lactational exposure to TCC could adversely affect folliculogenesis and the onset of puberty in female rat offspring. Twenty pregnant Sprague Dawley rats were equally divided into Control and TCC dam groups (supplemented daily with drinking water enriched with 0.5 mg/L of TCC) from gestational day5 to postnatal day21 (PND21). Female offspring, 20 from control and 20 from TCC dams, were subdivided into 4 subgroups (PND21, PND28, PND35 & PND42). The day of vaginal opening and first estrous cycle were determined. Ovarian sections of the offspring were processed for H&E staining and for immunohistochemical expression of Ki67, Caspase-3 and androgen receptors (AR) on the granulosa cells of ovarian follicles. Follicular count and atretic index were assessed besides, serum estradiol, progesterone, FSH and LH, C-reactive protein (CRP), malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. TCC offspring exhibited a significant delay in the onset of puberty and impedance of normal transition of the primordial follicles to more developed ones with altered cyctoarchitecture. Also, TCC decreased follicular count, proliferation and gonado-somatic index while it increased atretic index, apoptosis and AR of the granulosa cells along with disturbance of the feminine hormonal profile and oxidant/antioxidant balance. This study highlighted the potential long-term consequences of in utero and lactational exposure to TCC on the postnatal development of the ovary in rat offspring.


Assuntos
Carbanilidas/efeitos adversos , Lactação/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Carbanilidas/farmacologia , Feminino , Lactação/metabolismo , Masculino , Ovário/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Sprague-Dawley
11.
Artigo em Inglês | MEDLINE | ID: mdl-34197962

RESUMO

Unlike mammals, two kisspeptins genes encoding, kiss1 and kiss2 are detected in fishes with highly varied and contradictory difference in their reproductive activities. The present study was undertaken to examine the direct action of kisspeptin-10 and its role in gonadal activities in the gonadally quiescent Asian catfish using native mammalian kisspeptin decapeptide (KP-10) involving in vivo and in vitro approaches. The in vivo KP-10 treatment caused precocious onset of gametogenesis and its rapid progression, as was evident from the appearance of advanced stages of ovarian follicles in ovary, and advanced germ cells (spermatocytes/ spermatids) in the testis of the treated Clarias batrachus in comparison to the control gonads. It also elevated the steroid levels in gonads of the catfish in vivo and in vitro conditions. Simultaneously, it increased the expressions of key steroidogenic enzymes like 3ß-HSD, 17ß-HSD, and StAR protein, responsible for transfer of cholesterol from outer to inner membrane of the mitochondria of steroidogenic cells. Concurrently, it augmented the activities of 3ß-HSD and 17ß-HSD in the ovarian explants. The expressions of MAPK component (pERK1/2 and ERK1/2) were also up-regulated by KP-10 in gonadal explants. Thus, the data suggest that kisspeptin-10 stimulates gametogenesis by enhancing gonadal steroid production. The study also describes the putative mechanistic cascade of steroidogenic actions of kisspeptin-10 in the catfish so much so in teleost fish. The study also suggests that, kisspeptin may act locally to regulate gonadal activities in an autocrine/paracine manner, independent of known extra-gonadal factors in the catfish.


Assuntos
Proteínas de Peixes/metabolismo , Gametogênese , Kisspeptinas/metabolismo , Ovário/crescimento & desenvolvimento , Reprodução , Esteroides/biossíntese , Testículo/crescimento & desenvolvimento , Animais , Peixes-Gato , Feminino , Masculino , Ovário/metabolismo , Testículo/metabolismo
12.
Sci Rep ; 11(1): 13766, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215813

RESUMO

Sexual dimorphism in gene regulation, including DNA methylation, is the main driver of sexual dimorphism in phenotypes. However, the questions of how and when sex shapes DNA methylation remain unresolved. Recently, using mice with different combinations of genetic and phenotypic sex, we identified sex-associated differentially methylated regions (sDMRs) that depended on the sex phenotype. Focusing on a panel of validated sex-phenotype dependent male- and female-biased sDMRs, we tested the developmental dynamics of sex bias in liver methylation and the impacts of mutations in the androgen receptor, estrogen receptor alpha, or the transcriptional repressor Bcl6 gene. True hermaphrodites that carry both unilateral ovaries and contralateral testes were also tested. Our data show that sex bias in methylation either coincides with or follows sex bias in the expression of sDMR-proximal genes, suggesting that sex bias in gene expression may be required for demethylation at certain sDMRs. Global ablation of AR, ESR1, or a liver-specific loss of BCL6, all alter sDMR methylation, whereas presence of both an ovary and a testis delays the establishment of male-type methylation levels in hermaphrodites. Moreover, the Bcl6-LKO shows dissociation between expression and methylation, suggesting a distinct role of BCL6 in demethylation of intragenic sDMRs.


Assuntos
Metilação de DNA/genética , Receptor alfa de Estrogênio/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Receptores Androgênicos/genética , Animais , Transtornos do Desenvolvimento Sexual/genética , Epigênese Genética , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Caracteres Sexuais , Sexismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
13.
Philos Trans R Soc Lond B Biol Sci ; 376(1832): 20200426, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34247497

RESUMO

Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.


Assuntos
Evolução Biológica , Tamanho do Genoma , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Diferenciação Sexual/genética , Vertebrados/genética , Animais , Evolução Molecular , Feminino , Masculino , Ovário/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento
14.
Genes (Basel) ; 12(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069992

RESUMO

Fertility traits measured early in life define the reproductive potential of heifers. Knowledge of genetics and biology can help devise genomic selection methods to improve heifer fertility. In this study, we used ~2400 Brahman cattle to perform GWAS and multi-trait meta-analysis to determine genomic regions associated with heifer fertility. Heifer traits measured were pregnancy at first mating opportunity (PREG1, a binary trait), first conception score (FCS, score 1 to 3) and rebreeding score (REB, score 1 to 3.5). The heritability estimates were 0.17 (0.03) for PREG1, 0.11 (0.05) for FCS and 0.28 (0.05) for REB. The three traits were highly genetically correlated (0.75-0.83) as expected. Meta-analysis was performed using SNP effects estimated for each of the three traits, adjusted for standard error. We identified 1359 significant SNPs (p-value < 9.9 × 10-6 at FDR < 0.0001) in the multi-trait meta-analysis. Genomic regions of 0.5 Mb around each significant SNP from the meta-analysis were annotated to create a list of 2560 positional candidate genes. The most significant SNP was in the vicinity of a genomic region on chromosome 8, encompassing the genes SLC44A1, FSD1L, FKTN, TAL2 and TMEM38B. The genomic region in humans that contains homologs of these genes is associated with age at puberty in girls. Top significant SNPs pointed to additional fertility-related genes, again within a 0.5 Mb region, including ESR2, ITPR1, GNG2, RGS9BP, ANKRD27, TDRD12, GRM1, MTHFD1, PTGDR and NTNG1. Functional pathway enrichment analysis resulted in many positional candidate genes relating to known fertility pathways, including GnRH signaling, estrogen signaling, progesterone mediated oocyte maturation, cAMP signaling, calcium signaling, glutamatergic signaling, focal adhesion, PI3K-AKT signaling and ovarian steroidogenesis pathway. The comparison of results from this study with previous transcriptomics and proteomics studies on puberty of the same cattle breed (Brahman) but in a different population identified 392 genes in common from which some genes-BRAF, GABRA2, GABR1B, GAD1, FSHR, CNGA3, PDE10A, SNAP25, ESR2, GRIA2, ORAI1, EGFR, CHRNA5, VDAC2, ACVR2B, ORAI3, CYP11A1, GRIN2A, ATP2B3, CAMK2A, PLA2G, CAMK2D and MAPK3-are also part of the above-mentioned pathways. The biological functions of the positional candidate genes and their annotation to known pathways allowed integrating the results into a bigger picture of molecular mechanisms related to puberty in the hypothalamus-pituitary-ovarian axis. A reasonable number of genes, common between previous puberty studies and this study on early reproductive traits, corroborates the proposed molecular mechanisms. This study identified the polymorphism associated with early reproductive traits, and candidate genes that provided a visualization of the proposed mechanisms, coordinating the hypothalamic, pituitary, and ovarian functions for reproductive performance in Brahman cattle.


Assuntos
Fertilidade/genética , Reprodução/genética , Transdução de Sinais/genética , Animais , Bovinos , Cromossomos/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Humanos , Ovário/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Maturidade Sexual/genética
15.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070944

RESUMO

Embryogenesis is a complex multi-stage process regulated by various signaling molecules including pineal and extrapineal melatonin (MT). Extrapineal MT is found in the placenta and ovaries, where it carries out local hormonal regulation. MT is necessary for normal development of oocytes, fertilization and subsequent development of human, animal and avian embryos. This review discusses the role of MT as a regulator of preimplantation development of the embryo and its implantation into endometrial tissue, followed by histo-, morpho- and organogenesis. MT possesses pronounced antioxidant properties and helps to protect the embryo from oxidative stress by regulating the expression of the NFE2L2, SOD1, and GPX1 genes. MT activates the expression of the ErbB1, ErbB4, GJA1, POU5F1, and Nanog genes which are necessary for embryo implantation and blastocyst growth. MT induces the expression of vascular endothelial growth factor (VEGF) and its type 1 receptor (VEGF-R1) in the ovaries, activating angiogenesis. Given the increased difficulties in successful fertilization and embryogenesis with age, it is of note that MT slows down ovarian aging by increasing the transcription of sirtuins. MT administration to patients suffering from infertility demonstrates an increase in the effectiveness of in vitro fertilization. Thus, MT may be viewed as a key factor in embryogenesis regulation, including having utility in the management of infertility.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Melatonina/uso terapêutico , Ovário/metabolismo , Placenta/metabolismo , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Infertilidade Feminina/prevenção & controle , Melatonina/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ovário/crescimento & desenvolvimento , Glândula Pineal/crescimento & desenvolvimento , Glândula Pineal/metabolismo , Gravidez , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Glutationa Peroxidase GPX1
16.
Arch Insect Biochem Physiol ; 107(4): e21825, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34164848

RESUMO

Mating triggers physiological and behavioral changes in female insects. In many species, females experience postmating behavioral and physiological changes that define a post-mated state. These changes are comprised of several conditions, including long-term refractoriness to re-mating and increased production and laying of eggs. Here, we report that mating led to several changes in brown planthopper (BPH) females, including increased octopamine (OA), cAMP concentrations, and activities of several enzymes. Mating also led to changes in the expression of several genes acting in female physiology, including those in the cAMP/PKA signal transduction pathway. OA injections into virgin females led to similar changes. RNAi silencing of the gene encoding tyramine ß-hydroxylase, involved in the final step in OA synthesis, led to decreased expression of these genes, and reduced the cAMP/PKA signaling. At the whole-organism level, the RNAi treatments led to reduced fecundity, body weights, and longevity. RNAi silencing of genes acting in OA signaling led to truncated ovarian development, egg maturation, and ovarian vitellogenin (Vg) uptake. The impact of these decreases is also registered at the population level, seen as decreased population growth. We infer that OA signaling modulates the postmating state in female BPH and possibly other hemipterans.


Assuntos
Hemípteros/fisiologia , Oxigenases de Função Mista/metabolismo , Octopamina/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Longevidade , Ovário/crescimento & desenvolvimento , Oviposição
17.
Sci Rep ; 11(1): 12517, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131220

RESUMO

In vitro ovarian follicle culture is an active area of research towards providing fertility options for survivors of childhood cancer. Late-stage murine follicles (multilayer secondary and onwards) can be cultured successfully to maturity to obtain a meiotically competent oocyte for fertilization, but primordial and primary follicles usually die in culture because many key components of early follicle development are still unknown and difficult to mimic in vitro. To engineer a biomimetic three-dimensional culture system with high efficacy and reproducibility for the clinic, detailed mechanisms of early folliculogenesis must be uncovered. Previous studies have shown that primary murine follicles co-cultured in groups, in contrast to single follicles cultured in isolation, can reach preovulatory size and produce competent oocytes, but the factors accounting for the synergy of follicle co-culture are still unknown. To probe the underlying mechanisms of successful follicle co-culture, we conducted a time-course experiment for murine follicles encapsulated in 0.3% alginate hydrogels and compared between two conditions: groups of 5 (5X) versus groups of 10 (10X). For every 2 days during the course of 12 days, follicles were dissociated and somatic cells were isolated for microarray-based gene expression analysis (n = 380 follicles for 5X and n = 430 follicles for 10X). Gene activities in follicles co-cultured in larger groups (10X) had a distinct transcriptomic profile of key genes and pathways such as prolactin signaling and angiogenesis-related genes when compared to cells from follicles co-cultured in the smaller cohort (5X). To benchmark the results for follicles grown in culture, we compared our microarray data to data from murine follicles freshly isolated from the ovary at comparable stages of development previously published by Bernabé et al. Comparison of these datasets identified similarities and differences between folliculogenesis in the native microenvironment and the engineered in vitro system. A more detailed understanding of follicle growth in vitro will not only allow for better culture methods but also advance the field towards providing improved fertility options for survivors of childhood cancer.


Assuntos
Alginatos/farmacologia , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Transcriptoma/genética , Animais , Técnicas de Cocultura , Meios de Cultura/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Hidrogéis/farmacologia , Camundongos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos
18.
Int J Biol Macromol ; 183: 490-501, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33957197

RESUMO

The wingless-type MMTV integration site family member-4 (Wnt4), a member of the wingless-related integration site (Wnt) family, is widely accepted as a key regulator of ovarian development in mammals. In this study, a full-length cDNA of Wnt4 (designated as Sp-Wnt4) was cloned, characterized, and functionally studied in mud crab (Scylla paramamosain). The full-length cDNA of Sp-Wnt4 consists of 2659 bp with an open reading frame (ORF) encoding 359 amino acids, a 907 bp 5'-UTR and a 672 bp 3'-UTR. Sp-Wnt4 contains 25 cysteine (Cys) residues and three potential N-glycosylation sites. Sp-Wnt4 protein shared the highest identity (98.9%) to the Wnt4 protein of Portunus trituberculatus. The phylogenetic tree showed that Sp-Wnt4 and Wnt4 protein of Malacostracan crustaceans clustered together, indicating that they had a close genetic distance. Sp-Wnt4 was expressed at a higher level in the ovary compared to other tissues, with the highest expression level at the third stage (O-III) of the ovarian development (P < 0.05). A downward trend was observed in the expression level of Sp-Wnt4 from the embryo stage to crablet stages (P < 0.05). After unilateral eyestalk ablation, the expression level of Sp-Wnt4 significantly increased in testis (14-fold) and downregulated (3.1-fold) in the gill (P < 0.05) of females. In situ hybridization (ISH) assay revealed that Sp-Wnt4 transcripts were mainly localized in the cytoplasm of oocyte cells. These findings showed that Sp-Wnt4 play crucial roles in the ovarian development of S. paramamosain. In conclusion, our study provides novel insights into the evolution and roles of the Wnt4 gene.


Assuntos
Braquiúros/metabolismo , Ovário/metabolismo , Proteína Wnt4/metabolismo , Animais , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Ovário/crescimento & desenvolvimento , Filogenia , Caracteres Sexuais , Diferenciação Sexual , Proteína Wnt4/genética
19.
J Therm Biol ; 97: 102889, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863448

RESUMO

For successful reproduction of farmed fish, it is important to understand the relationship between gonadal development and environmental factors such as temperature and photoperiod. In this study, we determined the effects of temperature (T) and photoperiod (Pp) on serum estradiol-17ß (E2) and progesterone (P) contents, gonadosomatic index (GSI), and oocyte development in female tilapia. We used a central composite experimental design and response surface methodology. The experimental ranges were 18-36 °C for T and 0-24 h for Pp. The results show that the quadratic effects of T and Pp were highly significant for serum E2 and P contents, GSI, and the ratio of stage III to stage II oocytes (P < 0.01), and that the linear effects of T and Pp were also significant for these indicators (P < 0.05). The T × Pp interaction significantly affected serum E2 content (P < 0.05). Serum E2 and P content, GSI, and the ratio of stage III to stage II oocytes increased and then decreased with increasing T or Pp. The best combination of T and Pp for egg development was 28.6 °C/14.29 h. We observed the part of ovarian tissue containing stage V oocytes that are about to be discharged. Shortening the photoperiod or lowering the water temperature delayed the development of ovarian tissue so that most oocytes remained at stage II, and there were many atretic follicles. There were significant positive correlations between female GSI and serum E2, P, and the ratio of stage III to stage II oocytes. The results of this study provide a reference for the regulation of temperature and photoperiod to control broodstock gonadal maturation and hormone-induced broodstock spawning.


Assuntos
Ciclídeos/sangue , Ciclídeos/fisiologia , Fotoperíodo , Temperatura , Animais , Aquicultura/métodos , Estradiol/sangue , Feminino , Oócitos/crescimento & desenvolvimento , Oogênese , Ovário/crescimento & desenvolvimento , Progesterona/sangue
20.
Apoptosis ; 26(5-6): 235-247, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783663

RESUMO

P53 up-regulated modulator of apoptosis (PUMA), a pro-apoptotic BCL-2 homology 3 (BH3)-only member of the BCL-2 family, is a direct transcriptional target of P53 that elicits mitochondrial apoptosis under treatment with radiation and chemotherapy. It also induces excessive apoptosis in cardiovascular and/or neurodegenerative diseases. PUMA has been found to play a critical role in ovarian apoptosis. In the present paper, we review the progress of the study in PUMA over the past two decades in terms of its inducement and/or amplification of programmed cell death and describe recent updates to the understanding of both P53-dependent and P53-independent PUMA-mediated apoptotic pathways that are implicated in physiology and pathology, including the development of the ovary and cardiovascular and neurodegenerative diseases. We propose that PUMA may be a key regulator during ovary development, provide a model for PUMA-mediated apoptotic pathways, including intrinsic and extrinsic apoptotic pathways.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Doenças Cardiovasculares/patologia , Doenças Neurodegenerativas/patologia , Ovário/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/deficiência , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Ovário/citologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/deficiência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA